oral

Paper ID: 70882

IAF MATERIALS AND STRUCTURES SYMPOSIUM (C2) Advanced Materials and Structures for High Temperature Applications (4)

Author: Mrs. Solange Vivès Aubert & Duval, France, solange.vives@eramet.com

Mrs. Adeline Riou
Aubert & Duval, France, adeline.riou@eramet.com
Dr. David Crudden
United Kingdom, david.crudden@alloyed.com
Dr. André A. N. Németh
United Kingdom, andre.nemeth@alloyed.com

INNOVATIVE SUPERALLOY POWDER DESIGNED FOR ADDITIVE MANUFACTURING AND FOR HIGH TEMPERATURE USE UP TO 900C

Abstract

To reduce mass, energy use and costs of rocket engines and components for the space industry, the combination of Additive Manufacturing with innovative high temperature materials now offers a great opportunity to reach these goals. Aubert Duval, in partnership with Alloyed in UK have developed for these demanding applications a new powder alloy ABD®-900AM, offering high mechanical properties for components operating at high temperature and specifically designed for powder bed fusion process. ABD®-900AM is an age-hardenable nickel-based superalloy offering high temperature tensile strength, with a working temperature range up to 900C (1652F) in its age-hardened state. Compared to alloy 718, ABD®-900AM not only offers a higher operating temperature but also significant long-term stability using the same printing parameters. Besides the alloy has an excellent creep strength – similar to cast 939 and 738 alloys – while having a superior resistance to cracking during manufacture and heat treatment, enabling complex part design. Designed to be free of solidification, liquidation, and strain-age cracks, ABD®-900AM showcases exceptional printability for a 40% γ '-phase strengthened alloy. Materials performance and case studies will be presented.